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Magneto-Hydrodynamic (MHD) 
Generator at the Inlet
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MHD Generator Model

Assumptions
One-dimensional steady state flow
Inviscid flow
No reactive chemistry
Low Magnetic Reynolds number

x-t equivalence 



Flow Equations
Continuity Equation

Force Equation
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x - Coordinate along the channel
- Fluid density

u - Fluid velocity
A - Channel cross-section area
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P - Fluid pressure
k - Load factor

- Fluid conductivity
B - Magnetic field
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σσ eΩ - Electron Hall parameter

iΩ - Ion Hall parameter



Flow Equations...
Energy Equation

Continuity Equation for the electron number 
density

- Fluid internal energy
- Energy deposited by

the e-beam

ne - Electron number density
jb - Electron beam current

- E-beam energy
Z - Channel width
Y  - Ionization potential
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Performance Characterization

Attaining prescribed values of flow variables at the channel exit 
(Mach number, Temperature)
Maximizing the net energy extracted which is the difference 
between the energy extracted and the energy spent on the e-beam 
ionization
Minimizing adverse pressure gradients
Minimizing the entropy rise in the channel
Minimizing the use of excessive electron beam current
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Features of our optimal controller design technique
Works for both linear and nonlinear systems
Data-based
Finite horizon, end-point optimal control problem
Equivalent to time (position) varying system dynamics

Predictive Control Based Optimal 
Control

[1] Kulkarni, N.V. and Phan, M.Q., “Data-Based Cost-To-Go Design for Optimal Control,” AIAA Paper
2002-4668, AIAA Guidance, Navigation and Control Conference, August 2002. 
[2] Kulkarni, N.V. and Phan, M.Q., “A Neural Networks Based Design of Optimal Controllers for
Nonlinear Systems,” AIAA Paper 2002-4664, AIAA Guidance, Navigation and Control Conference, August
2002. 



Dynamic Programming Based State 
Feedback Control

Using the dynamic programming principle to design 
the controllers along the channel
An optimal policy has the property that whatever the initial state 
and initial decision are, the remaining decisions must constitute 
an optimal policy with regard to the state resulting from the first 
decision. 

- Richard Bellman

Assume available sensors along the channel



Dynamic Programming Based 
State-Feedback Architecture

Inlet MHD Channel
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Using Subnets to Build the Cost Function 
Network
ρk
vk
Pk
nek

ρk+1
vk+1
Pk+1
ne(k+1)

Electron beam 
current

jb(k)

Physical picture describing Subnet 1

Flow in Flow 
out

Continuously spaced e-beam windows 
each having a length of 0.5 cm
Subnet 1 chosen to correspond to the 
system dynamics between a group of 4 
e-beam windows
Length of the channel = 1 m
Need subnets up to order 50
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Subnet m, inputs and outputs.



Formulation of the Control Architecture: 
Neural Network Controller

Flow variables 
at the sensor 

location

Electron 
beam profile
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Reinforcement Learning/Adaptive Critic 
Architectures

Need to account for model uncertainties and disturbances or noise .
Reinforcement Learning/Adaptive Critic Architectures are well-
suited to handle model uncertainties and noise
The existing design serves as a good starting point for 
controller/model updating
The best features of the proposed dynamic programming based 
approach and the adaptive critic approaches can be combined



Value Function Based Reinforcement 
Learning

Consider a system with a discrete state and action space
Initial the cost-to-go function or the Value function for each state: 
V(sk)
Initialize the action policy (controller) for each state : π(sk)
Simulate an episode starting with a random initial state 
For each state occuring in the episode update the Value function 
using the principle of dynamic programming
For each state occuring in the episode update the policy to 
minimize the value function
Simulate another episode and loop



Implementing Value Function Based 
Reinforcement Learning

For a given episode:

t = T - 2 t = T - 1 t = T
Forward direction

Given st
Choose at = π(st)
Get rt = rt(st,at)

Get sT
Get rT = rT(sT)

Given st
Choose at = π(st)
Get rt = rt(st,at)

Backward direction

Update V(sT-1) ← V(sT-1) + 
α( rT-1 + rT - V(st) )

Update π(sT-1) = ( )TtTta
rasr

t

+− ),(min arg 1

Update V(sT-2) ← V(sT-2) + 
α( rT-2 + V(sT-1) - V(sT-2) )

Update π(sT-2) = ( ))(),(min arg 112 ++− + tttTta
sVasr

t



Implementing Q-Function Based 
Reinforcement Learning

For a given episode:

t = T - 2 t = T - 1 t = T
Forward direction

Given st
Choose at = π(st)
Get rt = rt(st,at)

Get sT
Get rT = rT(sT)

Given st
Choose at = π(st)
Get rt = rt(st,at)

Backward direction

Update Q(sT-1, aT-1) ← Q(sT-1, aT-1) + 
α( rT-1 + rT - Q(sT-1, aT-1) )

Update π(sT-1) = ),(min arg 1 tTta
asQ

t
−),(min arg 2 tTta

asQ
t

−

Update Q(sT-2, aT-2) ← Q(sT-2, aT-2) + 
α( rT-1 + - Q(sT-2, aT-2) )

Update π(sT-2) =

),(min arg 1 tTta
asQ

t
−



Q-Function Based Controller Updating 
the MHD Channel

Develop the subnets from the available simulation package that 
captures the known physics 
Design the optimal controllers using the dynamic programming 
based control architecture.
Obtain two layer network equivalence of the optimal 
controllers and the action dependent critics
Provides good base line controllers & action dependent critics
Improve these optimal controllers and the action dependent 
critics from real time data to account for stochastic factors 
(model uncertainties and disturbance or noise)



Implementation Details
From sensor 4 to the end of the channel (Assume 4 sensors in the
channel) :
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Implementation Details

Update 
Baseline
Action

Dependent 
Critic

Available 
Real Data

wsensor4

α1

αj
M

Available Computed Values 
of the Expected Cost-go-

function

E [Q( wsensor4, α1,… αj)]

With available real data calculate the new available values of
expected cost-to-go function from sensor 4 to the end of the 
channel
Update the baseline action dependent critic from sensor 4

With the updated ADC, update the baseline controller coefficient 
network Updated 
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From sensor 3 to the end of the channel

Trained
Subnets
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From sensor 3 to the end of the channel

Equivalent 
Two Layer 

Neural Network 

Baseline
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Action dependent critic-controller architecture
from sensor 3



Updating the Sensor 3 ADC with Real Data

Critic Updating: Uses principle of optimality

E [Q( wsensor3, α1,… αj)]desired = E[U( wsensor3, α1,… αj)] + E [Q*( wsensor4, α1,… αj)]

Available from the
updated sensor 4 ADC

Available from the
real data

Used to update the
baseline sensor 3 ADC

Controller Updating: Uses backpropagation

Backpropagate through the updated critic to get
α

α
∂

∂ ∗ )],([ 3sensorwQE

to update the controller



Critic-Controller Updating
Critic Updating:

Updated 
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Critic
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Controller Updating:
Same as the controller updating from sensor 4



Conclusions

Developed a neural network based optimal controller 
architecture for the hypersonic MHD channel
Data-based approach 
Implemented open loop and closed loop designs
ADHDP based design to account for stochastic factors 
in progress


